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Abstract—A new formulation has been developed to study the interactive buckling of thin-walled
columns having arbitrary cross-sections. The emphasis in this paper is, however, on columns with
a single axis of symmetry. The formulation is designed to take into account the simultaneous
interaction of the purely flexural and flexural-torsional overall modes of buckling with local

buck
with

ling. The local buckling deformations are described in terms of a primary local mode together
two secondary local modes of the same wavelength. The latter are triggered by the interaction

of bending in two perpendicular planes with the primary local mode. The three eigenmodes and the
six second-order in-plane displaccment fields are all computed using a finite-strip technique. The
modulation of the amplitudes of the local modes and the overall displacements are described in
terms of a one-dimensional finite element model. Thus a new beam element which has embedded
in it the local buckling information is developed. It appears that the present analytical model is very
versatile being applicable to members of arbitrary cross-section and end conditions. For columns

with
flexu

a single axis of symmetry, it is seen that there exists a non-linear coupling between the purely
ral and the flexural-torsional modes of buckling via local buckling deformation. Typical

examples of channel scction columns are presented. It is shown that the channel section columns
of commonly used proportions arc highly imperfection sensitive in the context of combined inter-

actiof

n of the cnumerated modes of buckling. This scnsitivity remaias even for columns with well

separated overall and local critical stresses—a feature which is in stark contrast with the behavior
of the Tvergaard pancl.
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NOTATION

constitutive relationship matrix

Young's modulus

length of the member

fength of a beam clement

bending moments in the x-2 and y- = planes and twisting moment

in-plane force resultants, normal in x- and p-directions and shear

axial displacement at the centroid due to overall action

lateral displucements in the Y- and Z-directions of the shear center

initial imperfection amplitudes in the Y- and Z-directions

global coordinates for the description of overall action

perimeter of the section

number of half-waves of buckling

thickness of plate element

thickness of stiffener

displacement components in the x-, y- and =-directions due to local buckling
local coordinate system used to define local buckling deformation

/L,

The distance between shear center and centroid for a section with an axis of symmetry
in-plane strain components, normal in the x- and y-directions and shear

angle of twist and the initial imperfection in the form of twist at the center of the column
Poisson’s ratio

scaling factors for the local buckling modes (mid-span amplitudes)

initial imperfection amplitudes (maximum values across the section) divided by ¢
average axial stress carried by any section

local critical stress in the ith mode

maximum of & carricd by the member

curvatures in the x-: and y-z planes and the twist.

INTRODUCTION

The interaction of local and overall buckling in columns has been the subject of intense
study by several investigators[1-5]. The imperfection sensitivity of thin-walled columns and
the drastic reduction in the load carrying capacity of long columns caused by local buckling
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are the reasons why interactive buckling has received so much attention. The method of
analvsis generally consists of the following steps.

(i) Determine by separate analyses the respective eigen-modes and the second-order
fields together with the mixed second-order field which arises by the interaction.

{ii) Pose the problem as one of two degrees of freedom, namely the scaling factors of
the eigen-modes 2, (i = 1, 2) using the theory of mode interaction{5]. Since the displacement
fields are known in terms of ,, it is possible to write a potential energy function in terms
of &,. This procedure works satisfactorily[1. 2] as long as no additional modes are triggered
by the interaction.

In the case of doubly symmetric sections the interaction of overall bending with the
local buckling mode associated with the smallest critical stress o, (primary local mode)
triggers a secondary local mode of the same wavelength. This phenomenon was discussed
by the authors in an earlier paper[6]. When this happens, the accuracy of two-mode analysis
is open to question in cases for which the two local critical stresses are close to each other.
This ditficulty was removed by incorporating the secondary local mode liable to be triggered
in the interaction as one of the participating modes in the analysis. The resulting three-
mode interaction analysis for thin-walled columns is described in Ref. [6].

The interaction of overall bending with local buckling has yet another important
feature which is sometimes overlooked. This is the “amplitude modulation™, the slow
variation of the amplitudes of local buckling along the length of the column|l, 2]. A simple
explanation of how this phenomenon ariscs is available in Ref. [7]. In Ref. [7]. the authors
employed a finite element description for both the amplitude modulation and the overall
bending behavior. This development makes it possible to investigate with ease, columns
and beam-columns with end conditions other than simply supported. However, the treat-
ment was restricted to members with doubly symmetric cross-sections,

In this paper. a new comprehensive formulation capable of handling columns and
beam-columns of arbitrary cross-section subject to interactive buckling is described. Sim-
ultancous interaction of up to three relevant local modes with overall modes which may be
flexural and/or flexural -torsional in character is within the purview of the new model. A
new beam element is introduced which has in it embedded all the relevant local buckling
information and has the degrees of freedom to depict biaxial bending, twisting and ampli-
tude modulation.

Itis well known that columns having open sections are susceptible to buckle in flexural -
torsional modes. A thin-walled column with an open section with a single axis of symmetry
has a mode of buckling in which bending at right angles to the line of symmetry and twisting
are coupled. If this mode is activated, the symmetry of local buckling tends to be lost as a
result of the additional compression thrown on one side of the axis of symmetry. [This
happens due to a triggering of a secondary mode, which is illustrated for a channel section
column in Fig. 3(¢).] Thus, there occurs an unsymmetric distribution of the effective stiffness
icross the section and, as a result, there occurs a coupling of the flexural-torsional mode
with the (otherwise uncoupled) flexural buckling in the plane of symmetry. Even in the case
of a section for which the flexural buckling in the plane of symmetry is the governing critical
mode, such a coupling may occur as a result of initial imperfections or lateral loads
perpendicular to the line of symmetry, which destroy the symmetry of local buckling
deformation. Again, as already mentioned, bending in each plane will trigger a secondary
mode -—an cllfeet which is important for scctions undergoing significant local buckling
deformation on cither side of the axes of bending. Thus, for an interactive buckling analysis
to be general, the analytical model must incorporate two sccondary local modes in addition
to the primary one, as well as biaxial bending and twisting of the member (Fig. 3). This is
precisely the scope of the present model. As in the earlier works of the authors, the local
buckling and the post-local (sccond-order) ficlds arc obtained using finite strips and, these
ficlds arc duly embedded in a beam element capable of biaxial bending and twisting. For
simplicity, attention in this paper is restricted to columns having a single axis of symmetry.
In what follows, the theory is bricfly outlined, and some typical examples of channel-section
columns and stiffened panels are considered.
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Fig. 1. Local coordinate system of plate clements and finite strip contiguriation for the description
of the local buckling deformation.

THEORY

The local buckling problem
The displacement components due to local buckling at any point on the middie sur-
face of a member of a plate structure (Fig. 1) are given by[7)

m 0 u
U= 0 éi'*' Uy f/é[ (I)
Wy W, 0

where &, are the scaling factors of the local modes ; subscript **I" refers to local buckling;
w, are the appropriately normalized local buckling modes, given by[8-10]

.= i) sin (") @

in which () describes the shape of the ith mode across the section, m is the number of
half-waves of local buckling and L the length of the structure. The second-order in-plane
displacement ficld associated with the ith mode is given by u,,, v, (¢ = j). The mixed second-
order ficld arising from the interaction of the ith and the jth local modes is given by «,,.
v, (i #j), respectively. For any given end-shortening, these displacements take the
form(8-10]

i1, () sin 2mnx/L) (3a)
ij.0(3) +85.0(3) cos 2max/L). (3b)

1,

yj

All the functions of y in eqns (2) and (3) are easily determined using the finite strip
method[10). Thus the local buckling displacements are known in terms of ;. These are
considered as “‘slowly varying™ in the subsequent analysis.
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Fig. 2. Globat coordinate system for the description of overall buckling deformation: C, centroid ;
S, shear center.

Qverall displacement

The overall behavior is modclled by the usual assumptions of the beam theory. Thus,
the shear deformation associated with variable overall bending and the intrinsic and/or
external restraints to warping of the cross-section, as well as the normal stress in the
transverse direction, are neglected. The displacements of the entire scction are then con-
veniently expressed in terms of U, the axial displacement at the centroid, the lateral dis-
placements of the shear center (V and W, respectively, parallel and perpendicular to the
linc of symmetry), and the angle of twist § of the section about the shear center. The
quantitics U, ¥, W, and @ are functions of x only.

Figure 2 illustrates the motion of a point Q on the center line of a plate element of a
column with a single axis of symmetry. The centroid C is the origin of the coordinate
system ; the principal axes of the section arc the reference axes in the planc of the section.
The displacements of the shear center S along the Y-axis (the axis of symmetry) and the Z-
axis are ¥ and W, respectively. The overall displacements of Q(¥°, W° in the transverse
plane are related to the corresponding displacements of S as follows:

V—-RB.(»)0 (4a)
W+a,(3)0 (4b)

VO
WQ

where 2, and f, arc the distances measured along the Y- and Z-axes, respectively, from Q
to S.
The contribution to the axial displacement at Q, U°, of the overall action is given

by(11]

dv dw dog
a = - — e o f ey
v=v [a(y) AR e w(y)}] )
where @ is the warping function given by
¥
a{y) = J p{s) ds 6)
(H

in which p defines the perpendicular distance from the shear center to the tangent to the
profile at any point distant y from a free edge of the profile measured along the profile.
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In eqn (5) @ is the averaged value of w, i.e.

fy w(s) ds )

where ¢ is the perimeter of the profile; « and § are the distances of Q from the centroid
along the Y- and Z-axes, respectively.

The strain—displacement relations

The components of the middle surface strain (e, ¢,. and y,,) and curvature (., X, X,)
of the plate elements {c} are related to the displacements as follows:

[ (e () (2

&=laxt32\a/ |t e T2 l\ar ) Tl
TS B
=T\ ) T e Tal\ar ) e
)

Yo = o5 ay ox )\ oy

(7: W, (72 Wy é‘ 2 L] do

=) = =2 =L 42— ). -
x.\' (1{2 * x_v 0y2 A x.Iy (a"_ ay +2d.\') (821 r)

In the foregoing relations, the axial strain ¢, consists of two parts, onc a contribution of
local buckling and the other of overall action. Notably, the bilincar interaction term
involving the overall displacement component normal to the plate element and w, has been
neglected. This term is of an order of magnitude smaller than the corresponding quadratic
term consisting of w, only, in so far as the overall bending slope is a slowly varying function
compared to the local one; once this term is neglected, it follows that the interaction of
overall and local buckling modes can generate only a modification of the local normal
displacement field and the in-plane displacements of the corresponding mixed second-order
field vanish—a postulate in this and earlier studies on interactive buckling(6, 7). Thus,
neglecting the said bilinear term is not only justified by its smallness, but also warranted
from the point of view of consistency. (However, it is necessary to retain both the linear
and quadratic terms in the overall displacements in order for the overall buckling to occur
and remain inextensional.) The in-plane strain term g, involves a Poisson's contribution
associated with ¢, in order to eliminate the normal stresses in the transverse direction caused
by overall buckling. Note that the twist term y, consists of two terms inside the parentheses.
The first term is the familiar twist associated with local plate buckling, while.the second
term is proportional to the twist per unit length due to St. Venant’s torsion—a term
which is constant across the section. These are multiplied by appropriate coefficients to be
consistent with the corresponding component of the stress vector.

Stress—strain relations
To match the strain vector {¢} defined in eqn (9). a stress vector {o} is defined in the
following manner:

{0} ={N. N, N, M. M, M)} 0

where N, and N, are the normal stress resultants in the longitudinal and transverse directions,
respectively, and N,, is the in-plane shearing stress resultant; M, and M, are the bending
moments in the x-z and y-z planes, respectively, and M,, is the twisting moment. All these
quantities are defined over a unit length of the plate middle surface. The constitutive
relationship for the linearly elastic and isotropic material may then be stated in the form



486 M. A. ALl and S. SRIDHARAN

{o} = (D] {&} (10)
where [D] takes the form
1oy g
v 1 0 0
(1-v)
00 5
Et PR
. Y it
(D] a9 5 0 (i
vee
0 IR 0
(1=
24

and £ and v are Young's modulus and Poisson’s ratio. respectively, and ¢ is the thickness
of the plate element.

Finite element discretization
The overall quantitics (U, ¥, W, 0) are discretized in the longitudinal direction using
the finite clement method as follows :

U U,
LoV e =19 (12)
wl 1w
0 b,

where U,..., B arc the degrees of freedom and ¢, the cubic polynomials defined over the
interval (— 1, 1) and given by

¢ =32-33+8); ¢y = M(1—F-F 455"
¢y = 4Q2+35-3); by =4(—1-F+F+5) (13a-d)

with € = 2x/L,, L, being the length of the element. The modulation of the local buckling
amplitudes is described by setting

G=C, /)X (=L2ii=13) (14)

where £, is the amplitude of the ith mode at the jth node and /, arc lincar functions given

by
Ji = (L}E) = (l ;‘) (15a,b)

In computation, functions f; are treated as slowly varying in the sense of [1, 2] and drastic
simplification is achieved thereby. The 16 degrees of freedom in eqn (12) together with the
six local buckling degrees of freedom in eqn (14) describe, in the most general case, the
behavior of an element of a thin-walled member.

[ e
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Computation of stiffness matrices

The equations of equilibrium of the structure are written using the principle of virtual
work in the notation in Ref. [12]. Let {a} be the vector of the nodal degrees of freedom of
the structure. Then

f {0)7{de} V'~ {da}T{P,} =0 (16)

i3

where the integration is over the entire volume of the (undeformed) structure. The linearized
strain increment {de} is expressed in terms of the virtual displacements given by {da} as
follows:

{de} = [B] {da} (1

where matrix [B] is a function of the current displacements, The equations of equilibrium
may then be expressed in the form

(F} = f (8] {0} dr—{Pc} = 0. (18)

The use of a Newton-Raphson procedure for solution of incremental degreees of freedom
in a load step. would first involve the establishment of a relation between (dal and {dF}.
Taking variations of eqn (I18) with respect to {da} and using eqns (10) and (17), we have

[dFY = [[K ]+ K] {da! = [K] {da! (19)

where [R'}] is the tangential stifTness matrix
K] = j-EB]T[D] [B] dr (20)

which consists of terms arising out of the lincar part of the strain-displacement relations
including the influence of the current geometry ; [K,] is the initial stress matrix given by

[K) da} = J‘d[B]T[D] (e} do. n

Replacing {dF} by the load increment in the first instance and subsequently by the un-
bualanced nodal forees computed using eqn (18) the incremental degrees of freedom are
solved for iteratively.

In the present problem, considerable computational simplicity is achicved by the
orthogonality of the trigonometric functions characterizing the focal buckling defor-
mation and treating ¢, and f; as slowly varying functions. In ¢ffect, these functions are
approximated to be piccewise constants over a wavelength of local buckling. As a step in
this process of simplification, [B] and {¢} are written in the form

[B] = [Bu]+ Z [8%) cos (nmnx/L)+[B;) sin (nmnx/L) (22a)
nw|

fe} = {gq} + Z {e£} cos (nminx/L)+ {&}} sin (nmnx/L) (22b)
LR

where the matrices and vectors on the right-hand side are free of trigonometric terms. Using

$AS 245D
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eqns (22a) and (22b) and the concept of slowly varying functions as applied to f and ¢,
the {K(] und [K,] matrices can be expressed in the compact form as

K] = j {[ B,]" [D][Bo]+ 5 >: ([B:1"[D][B:1+(B.1"(D] (B, ]]} (23a)

3 MBI} (3} + (B (D) {e:n}dv (23b)

!QI'—'

[K,] \da} = j- {d[B(}}T[D

and the vector of internal resisting forces takes the form

! \
P = J{[Bn] (D] e + 5 Z [[B2]T[D] (en} +[8.]"(D] {62}]} dr. (24

n=1

It is important to note that for the strain-displacement relations of the present problem
(eqn (9)). all the terms which give rise to the interaction are contained in the matrix [8,]:
the remaining [B] matrices contain local buckling terms only and thus the integrations
involving them in eqns (23) and (24) give rise only to a 6 x 6 sub-matrix of {K{] and 6x |
sub-vector of {P,} for each clement, These are computed in terms of the current values of
£,; using exact integration.

The contribution to the clement stiffness matrix arising from [B,] takes the form

k(lﬂ ; i\ of
(k] = [ : ] (25)
kl() kll

Of these the terms in the 4”9 matrix result from integrations of products of derivatives of
¢ functions which arc independent of y and are computed using cither exact or Gaussian
integration.

The terms in the & matrix arise from products of':

{1) the local buckling quantitics, variable with respect to p and those associated with
trigonometric terms {1 = 0,1, 2, eqns (22)) and the modulating functions f, and
(ii) the overall buckling quantitics, which are functions of ¢ and their derivatives.

Considerable simplification in integration is achieved here by the use of the concept of
“slowly varying" functions for fand ¢. The fourth-order Gaussian quadrature is employed
across cach strip and along the length of the element in evaluating these terms. The &”
matrix arises exclusively from local buckling functions and is derived by exact integration
as before. A similar strategy is used in setting up of the load vector { P} (egn (24)).

Solution process

The solution process is initiated with the values of initial imperfections as the starting
displacements of the structure at the zero level of stresses. The displacements and stresses
are accumulated as the solution proceeds along the cquilibrium path. An automatic load
incrementation scheme[13] is employed to negotiate the limit point of the load-deflection
path.

EXAMPLES

The theory outlined in the previous section was implemented through a computer
program. The theory and the computer program were checked for internal consistency,
agreement with some well-established results and convergence of the results with increasing
degrees of freedom. These results are presented elsewhere[14]. In this section a few examples
illustrative of the behavior of compression members having a single axis of symmetry are
presented. The results are compared wherever possible with those available in the literature.
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Fig. 3. (a) Cross-scction of the columns investigated. (b) - (d) The primary (§,) and the two secondary
local modes (§5, &), respectively. (¢), (1) The Euler and the flexural torsional modes of buckling.

The columns arc considered simply supported and are modelled by 24 longitudinal strips
in the local buckling analysis and five clements over half the column for the interactive
buckling analysis. Poisson’s ratio is assumed to be 0.3 in all the calculations.

Channcel-section columns

A column with a single axis of symmetry (Fig. 3(a)) may lose its stability by either
flexural buckling (bending in the plane of symmetry) or flexural-torsional buckling. The
cross-sectional displacements associated with these modes are illustrated in Figs 3(e) and
(), respectively. In the absence of local buckling the mode corresponding to the lower of
the two critical stresses governs the behavior of the column; in the presence of local
buckling, there exists a possibility of interaction of the two overall modes. The local modes
of buckling that arc relevant for the channcl-section column are illustrated in Figs 3(b)-
(d). Of these mode (1) (Fig. 3(b)) is the primary one as it corresponds to the lowest local
critical stress and dictates the wavelength of modes (2) and (3) triggered respectively by
bending of the column in the Z-X (perpendicular to the plane of symmetry) and Y-X (in
the plane of symmetry) planes, respectively. These have the same wavelength as mode (1).

Two channel-section columns designated by C-1 and C-2, respectively, are considered.
For section C-1, the flexural mode is the critical one while for section C-2, the flexural-
torsional mode is critical. The properties of the section and all the five relevant critical
stresses are given in Table 1 in their dimensionless forms, namely o \/E, o./E, 6,/E, 0,/E,
and o.,/E. Note that g,. 6 and o, are the three local critical stresses corresponding to the
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Table 1. Properties of the channel-section columns

Geometric Local critical Overall critical
proportions stresses stresses
Section Flange Web Length
type Dt Bt Lt m 6. Ex10® 6. Ex10® g, Ex10® o, ExI10' o,,Ex10
C-1 75 25 900 11 0.676 1.4 2.17 0.711 0.769
C-2
Cases (1)~ (iii) 50 23 650 11 1.05 1.44 3.31 1.52 1.05
Case (iv) 50 25 390 6 1.05 1.44 331 422 2.63

modes illustrated in Figs 3(b)-(d). respectively. and ¢, and 0., are respectively the flexural
and flexural-torsional critical stresses. The behavior of the column is not symmetric for
flexural buckling and would be governed by the sense of the initial imperfection F[5, 15].
In the following examples. I is assumed in the adverse sense. i.e. the one that would cause
additional compression on the slender outstands (webs) as the column bends.

The column with section C-1

From Table 1. it is scen that for this column the primary local critical stress and the
flexural critical stress are very close to cach other (0,/0, = 1.052) ; however, the flexural-
torsional critical stress is also in close vicinity (a,./0, = 1.138). Thus even though interaction
of the primary local and flexural buckling is expected to be the dominant feature of the
response, the influence of the flexural -torsional buckling cannot be discounted.

Cuse (1). In this cxample, all the degrees of freedom corresponding to the flexural -
torsional mode of buckling are climinated from the analysis, t.e. W= 0 = 0. (This can be
done in the sume manner as applying boundary conditions.) The initial imperfection in the
local mode (&)) is given by the maximum cross-sectional displacement divided by ¢ and is
taken as 0.05. The overall imperfection is given by the initial central deflection and is taken
as ¥ = L/22501. The results of the analysis are shown in Fig. 4 where they are also compared
with those of Benito and Sridharan(3]. In Fig. 4, the non-dimensional load is plotted against
non-dimensional mid-span deflections &, &,, and F/r. Benito and Sridharan employed a
two-degrees-of-freedom model to study the two-mode interaction problem. In addition,
they considered a mixed second-order displacement field that corresponded closcly with
mode (3) (Fig. 3(d)) of the present analysis. The two analyses have many similaritics, but
the present analysis incorporates the &, mode as a participating mode (which is thus treated
more accurately) and allows the amplitudes &, and &, to modulate along the length of the
column. However, the two analyses produce results which are in good agreement with each
other. The present analysis gives a slightly lower maximum load of ¢,/6, = 0.846 compared
to 0.882 of Benito and Sridharan.

Cuse (i1). As was noted carlier, the two overall critical stresses are close to each other
(cf. a,4/a, = 1.138 with o./g, = 1.052). Therelore, there exists a possibility of an active
participation of the flexural -torsional mode in the process of interaction. In order to
investigate this phenomenon, the same problem is analyzed with the following magnitudes
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Fig. 4. The load deflection characteristics of channel-section column C-1 (Table {): W =0 =0,

J =005 F = L;2250.
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Fig. 5(a). The overall load-deflection characteristics of channel-section column C-1 (Table [):
£ =005 F=1L;2250, W =102250.0=1.
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of initial imperfections: &, = 0.1, ¥ = L/2250¢, W = L/2250¢ and @ = [°. The maximum
load as given by o,/0, in this case is found to be 0.719—a value which is 15% lower than
that obtained in case (i). The load-deflection characteristics of this problem are shown in
Figs 5(a) and (b). Figure 5(a) plots the dimensionless load o/, against the maximum values
of the overall displacements. It is interesting to note that the flexural deflection W, associated
with the flexural-torsional (}-0) mode does grow but at an extremely slow rate in spite
of the presence of a significant magnitude of initial imperfection W associated with it. This
is due to the high flexural rigidity of the section for bending in the W-direction as is
evidenced by the dominance of the torsional component over the flexural component of the
deformation in the buckling mode where W:yo0 = 1.0:12.36. Further, the resistance to
twisting decreases as the outstands lose some of their effective stiffness as a result of local
buckling. As a consequence the angle of twist is seen to grow considerably, but W remains
inactive.

The plots of the non-dimensional load vs the maximum amplitudes (at x = L/2) of the
three local modes are shown in Fig. 5(b). The displacements in the primary local mode (&)
start developing from the outset of the loading history. Both the warping resistance of the
section to torsion and the bending in the Z-direction (the latter, a comparatively minor
effect) induce compression on one side and tension on the other side of the line of symmetry.
As a dircect result, the displacements in the form of the secondary local mode (&,) are scen
to grow rapidly. The displacements in the form of mode (3) are slow to develop in the
carlicr stages of the loading history because of the high value of a,/a,, but as the column
approaches its peak load &, takes on values which are not small in comparison to &, and
G2

Figure 5(b) also shows the variation of the local buckling amplitudes at the peak load.
Although the amplitude &, changes very little for this simply supported column problem,
the amplitudes for the sccondary local modes are seen to modulate considerably.
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Fig. 5(b). The local load-deflection characteristics of channcl-section column C-1 (Table [):
&, =005 F = Li2250, W = L2250, 0 = | .
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Fig. 6. The local and flexural-torsional load-deflection characteristics of channel-section column
C-2(Table 1): &, =0.1, W =0, = L/2200y,, ¥ = 0. L = 650t.

The results of this example problem confirm the general view that the interaction of
local and overall buckling results in severe imperfection sensitivity for near-coincident
buckling. [t also indicates that the flexural-torsional mode can play a significant role in the
interaction even though a.4 > o,.

The column with section C-2

The section of this column has a relatively narrow flange compared to section C-1
(Table 1) and as a result the flexural-torsional mode governs the initial buckling behavior.
The reduced slenderness of the flange also has the cffect of increasing o, and bringing it
closer to g, and a,—these values being now governed by the slenderness of the outstands.
The behavior of the column is studied varying the levels of the initial imperfections in cases
(1) -(iit) below. In casc (iv). the length of the column is reduced thus separating the
magnitudes of the governing local and overall critical stresses by a wide margin.

Case (i). The interaction of the local and flexural -torsional buckling is examined by
excluding the flexural buckling mode from the analysis, The initial imperfections are:
& =0.1;: W=0.0, and 0 = (L/2200)/y,. The results of this analysis are shown in Fig. 6
where the non-dimensional load is plotied against maxima ol W/r, 0, &, and &,. The column
is not seen to be imperfection sensitive for the type of interaction considered. It is seen
(Fig. 6) that at about ¢/a, = 0.6 the column starts developing huge deformations with a
corresponding drop in the rate of increase the axial load carried. The column becomes
somewhat stiffer around a/6, = 0.68 and then continues indefinitely to carry additional
load. This behavior is similar to that observed by Benito[15). (Such a behavior will not be
observable in practice because of the reality of flexural buckling excluded from the analysis.)

Cuase (ii). The flexural-torsional mode of buckling is suppressed in this example and
the interaction between the overall flexural buckling and local buckling is studied in
isolation. The assumed initial imperfections are: &, = 0.1 and ¥ = L/1000. In Fig. 7, 6/s,
is plotted against maxima of ¥/r and ¢, and &,, respectively. The maximum load as given
by ¢,/0, ts found to be 0.624. Hence the column is imperfection sensitive though o, is about
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Fig. 7. The local and flexural load-deflection characteristics of channel-section column C-2
(Table 1): &, = 0.1, "= L1000, ' =T =0, L = 650¢.
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Fig. 8. Local imperfection sensitivity of channel-section column C-2 (Table 1): 7 = £;2000,
W =L/10000,F=1.,L =650

45% higher than o,—an observation which agrees with the general finding of Ref. [15]. It
follows that the essence of the interaction lies in the flexural mode rather than in the
flexural-torsional mode.

Case (iii). The simultancous interaction of local, flexural and fexural-torsional buck-
ling modes is investigated in this example. The assumed overall initial imperfections are:
V= L2000, W = L/10,000 and 0 = | . The local imperfection is assumed in the primary
mode only and this is varicd from &, = 0 to 0.2. Figure 8 shows the variation of the maximum
non-dimensional load with &, with the other imperfection magnitudes kept constant. It is
found that the column is significantly imperfection sensitive. The load-deflection charac-
teristics for a case with & = 0.1 are shown in Fig. 9. From a comparison with casc (i), it
is scen that the maximum load is reduced significantly in this case (cf. ,/a, = 0.52 vs 0.63)
despite the fact that the overall imperfection in this case has been reduced by half., This
once again underlines the significant role of the flexural-torsional mode when it acts in
conjunction with the purcly flexural mode. The extent of participation of the various local
and overall modes is clearly seen in Fig. 11 In particular, the secondary local mode
associated with the flexural-torsional buckling is seen to play an important role. It appears,
however, that none of the five modes can be neglected in an accurate description of the
behavior and determination of the maximum load of the column.

Case (iv). In this case the length of the column is reduced to 0.6 of its length in the
previous cases so that L = 390r and m = 6. The values of the overall critical stresses are
now well separated from the primary local critical stress (o,4/0, = 2.50 and o,./o, = 4.02),
Imperfections are assumed in the same manner as in case (iii), i.e. & = 0.1, ¥ = £/2000,
W = L/10,000 and ¢ = 1”, The load-deflection characteristics are shown in Fig. 10. The
behavior is similar to that observed in case (iii). The maximum load attained in this case
as given by g,/ is only 0.75 (which in the absence of imperfections cannot be smaller
than 1.0). Thus the fact that the overall critical stresses are considerably higher in this case
changed neither the severe imperfection sensitivity nor the general behavior of the column.

055 {
050 m\\ﬁ I / >~
04s = ﬁ A
o AL

035 1[
00— 87 "o 04 08 12
& 8o &y v/t, Wi, 10x6°

Fig. 9. The load-deflection characteristics of channel-section ¢olumn C-2 (Table I): g =01,
F = L/2000, 3V = £/10.000. = 1", L = 6501
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Fig. 10. The load-deflection characteristics of channel-section column C-2 (Table ): &, = 0.1.
= L2000 = L:10000,F=1.L = 3%

Stiffened panel

Interactive buckling and imperfection sensitivity of the Tvergaard panel[1-3. 16] are
studied in this section. The cross-sectional details of the panel are shown in Fig. 11. The
panel has a very slender plate stiffened by stocky (7,/¢r ~ 4.5) stiffeners. Because the panel
is a part of an “infinitely™ wide plate. the flexural-torsional mode of buckling does not exist
for the pancl. The panel is simply supported over a span of 4B, B being the width of the
panel. The primiry local mode consists of six half-waves (m = 6) cach of length 28/3. The
initial buckling analysis of the panel with m = 6 and the mixed second-order field arising
by the interaction of the primary local and the overall mode indicated{15] that there is no
relevant secondary local mode which could be triggered by interaction. Thus the major
interaction takes place between the Euler-type overall mode and a single amplitude-modu-
lated local mode. This is a case of near-coincident buckling with ¢, = 0.475x 10 * and
o,/a, = 1.036. [Note that the present analysis does not consider shear-lag effects for overali
buckling and the probable error introduced due to this assumption in this casc (L/B = 4)
has been discussed by Koiter and Pignataro{2].]

The load deflection characteristics are shown in Fig. 12 in which the non-dimensional
displacement quantitics &, and V1 at mid-span are plotted against the non-dimensional
load a,/a,. Three cases are ilustrated : case (i) ¥ = 0.0; case (ii) ¥ = L/4000; and case (iii)
V = L/2000. The local imperfection &, is assumed to be 0.05 for all three cases. Though the
pancel has near-coincident eritical stresses, it is not very imperfection sensitive. The maximum
load is almost the same tor all three cases considered. For cases (i1) and (i), the behavior
of the column resembiles that of a solid Euler column with a reduced stiffness ; the deflections
increase without limit as the column approaches asymptotically the “buckling™ toad the
vilue of which is not governed by the imperfection magnitudes. Figure 12 also shows
the variation of the function modulating the local buckling amplitude for case (ii) at
g,/6, = 0.882. The amplitude is seen to vary rather significantly showing thus the import-
ance of the phenomenon of amplitude modulation in the interactive buckling problems.

The panel problem discussed here has been studied by Tvergaard[3. 16] and Koiter
and Pignataro[l, 2]. The present analysis is similar to that of Ref. [1]. The principal difference
is that the latter uses a “lower bound approach™ for the post-local-buckling analysis.
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Fig. I'1. Details of the Tvergaard panel.
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Fig. 12. The load deflection characteristics of the Tvergaard panel (7, = 0.05).

Furthermore. the present analysis employs a vastly larger number of degrees of freedom
and for a column with no overall imperfections, it accounts for the interaction between
local buckling and overall bending from the very outset of the loading history. For the case
with I =0, Ref. [1] indicates that the maximum load as given by ¢,/a, has a lower bound
of 0.889 (however large the value of &, may be). This load level is indicated in Fig. 12 by a
dashed line parallel to the F-axis. Again for ¥ = 0 and &, = 0.05, Ref. [2] reports a value
ofa,/6, = 0.922. In this case. the present analysis yields a central deflection of L/124 for a
valuc of o/, = 0.912 (not shown). Beyond this point. the non-dimensional load continucs
to increase, though extremely slowly, with an enormous increase in the deflections. Despite
the differences, both the analyses are seen to be in very good agreement indeed.

CONCLUSIONS

A new versatile analytical model for interactive buckling in thin-walled columns has
been presented. The following are some of the important features of the new model.

(i) It can deal with the problem of simultancous interaction of overall bending in two
principal directions and twisting of the column with local buckling.

(ii) The local buckling deformation contributed by a primary local mode and two
relevant secondary local modes together with all the six associated second-order dis-
placement ticlds are duly taken into account. These ficlds are computed using the finite strip
method.

(iii) The overall displacements and the modulution of the amplitudes of the local
buckling modes are modelled using a one-dimensional finite element formulation.

(iv) As a result of (i) - (it1), the model is applicable in the analysis of columns and
beam-columns of arbitrary cross-section and end conditions.

Some examples of compression members having a single axis of symmetry are presented
in this paper. The interaction of the local, flexural and flexural -torsional modes of buckling
with local buckling in channcel-section columns is found to be very imperfection sensitive.
The load deflection curves show well-defined limit points even for the case of well-separated
critical stresses. Though the flexural buckling and the primary locul modes arc the essential
components in the interiction, the inclusion of the flexural torsional mode and associated
secondary mode is necessary for a reliable prediction of the capacity of the columns,

The severe imperfection sensitivity of the channel-section columns noted here is in
marked contrast with the behavior of the columns with doubly symmetric sections which
for valucs of a4/a, of 2.0 or above, often exhibit little or no sensitivity to imperfections and
behave like solid Euler columns with a reduced stiffness.

However, it is not possible to make a gencralization of the behavior of columns with
a single axis of symmetry based on the example of channel-section columns. The Tvergaard
panel is a case in point. It is a case of ncar-coincident buckling but exhibits only a moderate
level of imperfection sensitivity and for larger magnitudes of initial imperfection, the solid
Euler column behavior cited carlier.
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